If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2+23x-21=0
a = 64; b = 23; c = -21;
Δ = b2-4ac
Δ = 232-4·64·(-21)
Δ = 5905
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{5905}}{2*64}=\frac{-23-\sqrt{5905}}{128} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{5905}}{2*64}=\frac{-23+\sqrt{5905}}{128} $
| (2x+9)×5=5x+10 | | 4x-30=-2(x+9) | | 2p/4+24/4=5 | | 3x+21+3x-2=50-3x+32 | | 2x^2+7x+7=x | | 64x^2+32x+4=9x+25 | | 1/4(-8x+16)=-32x-26 | | 14+19+n/3=17 | | (4)=6x-1 | | 3/4q-7=18 | | 4(5x-3)-3(3x-18)=5(2x+2)-2 | | 4x+38-5x=2-9x+4 | | X+(8÷3)x=55 | | 7(x-6)-4=-46 | | 10x-6=46 | | 6(x+1)+3x+3=1+7x | | 5.1+15=4.5w-15 | | x/5=1+3/x+2 | | x=4-12/5x | | x^2-9x+4/7x^2+3x+5=0 | | 18=-7x+5x+30 | | 9x-12+2x=x-2 | | 2x+32=2x+32 | | −5(2x−6)+8x=22 | | 2+x-1=5 | | 3x-5x+2=-4x+4 | | 5+7r-3=7r+34-4r | | 55=45*1,2x | | x(x)+2=2x+64 | | 2(2x-6)=(2x-6)4 | | 3n+8–3=24 | | 24=3n+8–3 |